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Gravitational lensing is an important phenomenon in astrophysics that provides insight into the
distribution of matter in the universe. One very e↵ective way to discover lensed obejcts is through
spectroscopic detection; despite its significance, traditional methods for detecting and characterizing
gravitational lenses spectroscopically are limited and rely heavily on the manual examination of
spectra. In this paper, we explore the potential of supervised machine learning in detecting and
analyzing gravitational lenses from Sloan Digital Sky Survey (SDSS) spectra. The study is a proof of
concept for a neural network trained on synthetic data to reliably recognize 12 di↵erent emission lines
and their source redshift. This is the first study to demonstrate the potential of machine learning
in spectroscopic detection of lensed objects, and the results are promising, but the accuracy must
be improved to make the CASIGLO project viable for implementation into the data pipeline for a
survey, such as SDSS.

I. INTRODUCTION

Many of the scientific challenges once faced by teams of
astronomical data scientists are now being overcome by
strategically applying deep learning methods [see for e.g.;
Farsal et al. 2018, Salakhutdinov 2014], providing greater
insight into the tremendous volume of astronomical data
that has been collected over the span of many decades.
The understanding of the composition of galaxies and the
search for dark matter continues to be considered one of
the biggest open questions remaining in our model of
the universe [National Academies Press 2021]. Studying
gravitational lensing is a great tool for learning about
galaxies’ initial mass functions (IMFs), galactic evolu-
tion, the expansion of the universe, dark matter, and
even modified theories of gravity. However, currently in
the field of gravitational lensing, finding lenses to study
requires a ton of manual inspection, either of images or
of galactic spectra.

We leverage TensorFlow [Abadi et al. 2016], a machine
learning framework for Python, alongside SDSS’s mas-
sive dataset of galactic spectra, in the hopes of achieving
accurate and e�cient automated inspection of galactic
spectra. This will not only speed up the process of find-
ing lensed objects to study but also has the possibility
of finding lenses overlooked in past surveys. While we
will be using SDSS data, the process detailed in this pa-
per should be generalizable to other datasets, as should
the weights, biases, and filters in the trained machine-
learning model.

The main goals of this project are to use the results of
the computer-assisted inspection to identify candidates
that would benefit most from follow-up space telescope
imaging and to add refinement to the detection algo-
rithms to minimize false positives. We have also applied
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physics as much as possible inside the model to limit the
deep learning technical debt [Sculley et al. 2015].
Before jumping into the process, let us first discuss

some of the important background needed to understand
what the CASIGLO project is and why it is designed the
way it is. The rest of §1 discusses important background
information. §2 will cover the computational methods
used in the CASIGLOmodel. §3 will look at the results of
training the model and steps that were taken to improve
results. §4 concludes the paper by giving an overview of
the process and discussing future work that needs to be
done.

A. Machine Learning Background

Machine learning is a field of artificial intelligence that
involves training computers to e↵ectively ’learn’ from
data and make predictions or decisions based on that
learning. The field has a much longer history than most
would assume, dating back to 1959 with Arthur Samuel
and his work at IBM [Samuel 1959]. In essence, the al-
gorithm he created allowed a computer to play the game
of checkers. It combined information such as the number
of pieces on both sides (di↵erentiating between regular
pieces and ’kings’) and how close pieces were to becoming
’kings’. Using this information, the computer could cal-
culate the probability of winning in the current state, as
well as the future probability after making di↵erent sets
of moves. While computing power was limited, Samuel
continued refining his scoring function until the computer
could beat an amateur player by simply choosing the
moves that maximized the function. This method, called
”minimax”, is the basic idea many machine learning al-
gorithms still use today.
Over the decades, machine learning has advanced sig-

nificantly, driven by the development of more robust algo-
rithms, the availability of large datasets, and the growth
of computing power. In recent years, machine learning
has become increasingly important in various fields, in-
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cluding healthcare, finance, transportation, and more.
For example, machine learning has benefited tasks such
as object recognition and image classification in com-
puter vision. The applications of machine learning are
not limited to computer vision, however. Machine learn-
ing can predict stock prices, detect fraud, and improve
risk management systems in finance. In healthcare, ma-
chine learning is used for drug discovery [Koh et al. 2021],
diagnosing diseases, and analyzing medical images. The
now (in)famous ”ChatGPT”, a natural language process-
ing chatbot, was also built on these principles.

The importance of machine learning lies in its ability to
automate increasingly complex tasks as our understand-
ing of the field deepens. By learning from large datasets,
machine learning algorithms can identify patterns, make
accurate predictions, and provide valuable insights that
would be di�cult to obtain using traditional methods;
for example, Srinivasan et al. [2022] at Argonne National
Lab have automated the process of discovering possible
new materials, accelerating the process of material dis-
covery. Other branches of physics are already using ma-
chine learning to their advantage; our goal is to do the
same. Machine learning can also discover new knowledge
and relationships in data that may have gone unnoticed
by human experts; in this proof of study concept, we use
a specific type of machine learning, called ”supervised
learning”, in hopes of doing just that.

Supervised machine learning is a type of artificial intel-
ligence that involves training a model to make predictions
or classifications based on a set of labeled data. In this
approach, one provides the model with input data and
its corresponding outputs (or labels) for each data point.
The model then learns to generalize from this training
data and make predictions on new data the model has
not seen previously.

The use of supervised machine learning has the po-
tential to revolutionize the field of gravitational lensing
by allowing for the automated detection and character-
ization of lenses from large datasets. A well-trained AI
could detect many of the lensed objects overlooked by
experts, significantly increasing the number of lensed ob-
jects available to be studied. Increasing the amount of
data could provide us with a more complete picture of
the distribution of matter in the universe and advance
our understanding of the evolution of galaxies and even
the nature of dark matter. However, first, let us cover
some astronomy and lensing background so we can un-
derstand how to apply machine learning.

B. Astronomy / Spectra Background

Just like a prism separates white light into the rainbow
of colors in the electromagnetic spectrum, astronomers
use a device called a spectrograph to split up the light
from a galaxy into its component ‘colors’, giving us a
graph that shows the intensity of light emitted by the
galaxy at di↵erent wavelengths. The resulting spec-

trum can reveal a lot of important information about
the galaxy’s composition (temperature, motion, etc).
Galaxy spectra typically show a continuous spectrum,

which is a smooth curve that represents the intensity of
light emitted by the galaxy at all wavelengths. This is
caused by the thermal radiation of stars and gas in the
galaxy. However, galaxy spectra also show distinct spec-
tral lines, which are sharp peaks or valleys at specific
wavelengths that correspond to the emission or absorp-
tion of light by atoms or molecules in the galaxy.
When an atom or ion in a galaxy transitions from an

“excited”, higher energy state to a lower energy state,
it emits a photon with a very specific wavelength. The
wavelengths of the emission lines are determined by the
energy di↵erence between the two energy levels involved
in the transition, which in turn depends on the chem-
ical element producing the line. So di↵erent chemicals
produce di↵erent sets of emission lines, and these same
sets of lines can be seen in galaxy spectra. By measuring
the di↵erences in shape and width of these lines, we can
deduce information about the temperature, density, and
velocity of the gases and objects in the galaxy. We can
also use these emission lines to measure the distance to
a galaxy.

FIG. 1. Two emission lines created by O2 detected in the
MaNGA Survey using the BOSS spectrograph (discussed in
§1.D) [Talbot et al. 2022]. They appear almost as a single line
due to the detectors sensitivity and the lines being relatively
close to one another.

However, as emission line photons travel across the uni-
verse from a galaxy to our detectors, the expansion of the
universe stretches out the wavelength of the photon and
pushes the emission line to a longer, redder wavelength,
moving the position that the lines that appear in spec-
tra. The ratio of the shift in wavelength to its emission
wavelength is called the redshift, and it is directly related
to its distance from Earth (Higher redshift = longer dis-
tance).
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The most commonly used spectral lines for redshift
measurements are the Balmer series of hydrogen emis-
sion lines, which occur at specific wavelengths in the
visible part of the spectrum, but there are 12 standard
emission lines that are commonly detectable in galaxy
spectra shown in Table 1.

TABLE I. Detectable Emission-line. The listed emission lines
were used to detect background galaxy candidates. Column
one lists the name of each emission line. Column two lists the
wavelength in a vacuum of a restframe. Column three lists
the maximum redshift each emission line can be detected by
the BOSS spectrograph.[Bolton et al. 2012]

Emission Restframe zmax

Line Wavelength [Å]
(1) (2) (3)
[O ii]b 3727.09 1.78
[O ii]a 3729.88 1.78
H� 4102.89 1.52
H� 4341.68 1.38
H� 4862.68 1.13
[O iii]b 4960.30 1.09
[O iii]a 5008.24 1.07
[N ii]b 6549.86 0.58
H↵ 6564.61 0.58
[N ii]a 6585.27 0.57
[S ii]b 6718.29 0.54
[S ii]a 6732.68 0.54

The science behind spectral emission lines and photon
redshift allows us to learn many things about stars, neb-
ulae, and galaxies, however, it can only tell us so much.
Simply knowing the chemical makeup can not tell us any
information on the structure of the galaxy, such as its
shape or mass, both of which are needed to study dark
matter halos. To get this kind of information, we need
another form of observation: how the galaxy itself a↵ects
the light around it.

C. Gravitational Lensing Background

Gravitational lensing is a phenomenon that occurs
when light from a distant source passes close to a mas-
sive object, such as a galaxy or a galaxy cluster. The
gravitational pull of the massive object bends the path
of the light, causing it to be deflected and magnified, cre-
ating either multiple images of a point source or bending
an extended source into a ”banana-shaped” arc. The
bending of light due to gravity was first predicted by Al-
bert Einstein in his theory of general relativity in 1919.
Sir Arthur Eddington confirmed it the same year dur-
ing a total solar eclipse in Russia amid the First World
War [Dyson et al. 1920]. However, Einstein never re-
ally pursued the idea further. It was not until the 1930s
that Rudi W. Mandl persuaded Einstein to consider the

implications of gravitational lensing seriously, but even
then, he only considered the lensing due to stars; Fritz
Zwicky was the first person to discuss the possibility of
lensing due to galaxies (which were called Nebulae at the
time), noting that the likelihood of measuring a ”double
image” of other galaxies would be much more significant
than that for stars due to their larger diameters [Zwicky
1937].
Gravitational lensing has since become a significant

tool in astrophysics, providing a unique way to study the
distribution of matter in the universe. The lensing e↵ect
is sensitive to the mass distribution of the lensing object,
which includes both the visible and dark matter compo-
nents, making it a powerful tool for exploring the dark
matter content of galaxies and galaxy clusters or testing
theories of modified gravity (e.g., MOND Sanders and
McGaugh [2002]). Scientists used lensing calculations on
the Bullet Cluster, one of the most famous pieces of evi-
dence for dark matter, to determine the total mass distri-
bution in the cluster apart from the baryonic mass, which
is detected through x-rays [Clowe et al. 2006]. Lenses,
however, also focus light; this causes lensed objects to ap-
pear brighter in the sky, allowing us to see more distant
objects than normally possible.

FIG. 2. An example of a gravitational lens imaged by the
Hubble Space Telescope for the SLACS survey. The dark
circle in the middle is the ”lens” galaxy, which is bending the
light of a galaxy behind it into a ring.[Brownstein et al. 2012]

Standard methods for detecting and characterizing
gravitational lenses rely on the manual identification of
characteristic features either in galaxy spectra or images.
However, these methods are time-consuming and require
expert knowledge, limiting the number of lenses that can
be identified and characterized. Spectral methods have
also restricted positive detections to rely on emission lines
with relatively large signal-to-noise ratios (SNRs) to limit
false positives, further limiting the number of lenses we
detect. With a properly trained model, this SNR limit
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could no longer be an issue, meaning that many lensed
objects previously missed by experts, could be detected.

Today, gravitational lenses are being used to constrain
specific types of dark matter. A recent paper published
in Nature by Amruth et al. [2023] uses gravitational lens-
ing to provide evidence that axions (very light bosons)
are a stronger candidate for dark matter than weakly-
interacting massive particles (WIMPs) due to their wave-
like properties.

D. Past Surveys (SLACS, SWELLS, BELLS, SILO)

Now that we have su�ciently discussed the history of
gravitational lensing let us look into more recent searches
for gravitational lenses. From least to most recent, the
most prominent projects are SLACS, SWELLS, BELLS,
and SILO, all of which use the Sloan Digital Sky Survey’s
database of galaxy spectra for object selection. We will
also discuss the MaNGA project, which focused specif-
ically on nearby galaxies but did not focus on lensed
objects. Firstly, the Sloan Lens ACS (SLACS) Survey
[Bolton et al. 2005] used the SDSS database of galaxy
spectra and searched for spectra that contained at least
three emission lines at a singular redshift, zFG, much
greater than the target redshift. The survey was designed
to study galaxy evolution and galactic structure forma-
tion, such as spiral arms, by detecting early-type galax-
ies at large redshifts. (Early-type galaxies have little to
no disk component and low star-formation rates). The
paper also presented a method for subtracting the fore-
ground galaxy from the observed spectra to more easily
identify features like emission lines. After selecting a sub-
set of spectra with the highest likelihood of being lensed
objects, the SLACS surveys followed up with imaging us-
ing the Advanced Camera for Surveys (ACS) aboard the
Hubble Space Telescope, allowing for more detailed mod-
eling to be done. This paper, published in 2006, found
19 newly discovered lensed objects. The survey eventu-
ally published 13 separate papers by the end of 2017 and
discovered over 100 strongly lensed galaxies, making it
one of the most significant collections of lensed galaxies
to date.

On the other hand, in 2011, the Sloan WFC Edge-on
Late-type Lens Survey (SWELLS) looked specifically for
late-type, edge-on galaxies to observe both their lensing
and kinematic components to calculate the relative con-
tributions of baryons to dark matter in the centers of
these galaxies [Treu et al. 2011]. However, to do this,
one needs to separate the disk and halo structures of
galaxies, which requires an independent measurement of
the mass-to-light ratio of the galaxy. Often, this ratio is
assumed to be the constant �� = 5133 kg/W, which is
taken from the sun. However, as much of the mass in
the galaxy lies in its dark matter, this value would be
inaccurate for anything on a galactic scale. This survey
used two sub-samples of data: one from the SLACS sur-
vey and the second found by the SWELLS team using a

selection algorithm. The SWELLS algorithm identified
over 200 lens candidates, and the SLACS survey had 85
lenses and 13 candidates. All 298 of these images were
manually inspected to pick out only edge-on, late-type
galaxies, and this resulted in only 27 lenses used in the
survey.

Building o↵ both the techniques of the Baryon Os-
cillation Spectroscopic Survey (BOSS), which allowed
for the detection of higher-redshift emission lines, and
the SLACS survey’s success, the BOSS Emission-line
Lens Survey (BELLS) spectroscopically built a catalog of
25 definite and 11 high-likelihood strong galaxy-galaxy
lenses with redshifts between 0.4 and 0.7 [Brownstein
et al. 2012]. These 44 lens candidates were found in only
the first six months of data from an approximately five-
year-long project. While much of the data was narrowed
down by automated selection procedures, 1303 multi-line
hits, and 741 single-line hits ( 2 thousand spectra to-
tal) had to be manually inspected to confirm the pres-
ence/likelihood of it being a lensed object. Shu et al.
[2016] later expanded the survey in the fourth project pa-
per by finding 21 more lens candidates identified through
Lyman-Alpha (Ly � ↵) emissions and confirming them
with Hubble Space Telescope imaging.

While not specifically a lensing survey, the MaNGA
(Mapping Nearby Galaxies at Apache Point Observa-
tory) survey is also relevant to the CASIGLO project.
The MaNGA survey was a significant component of
SDSS-IV, obtaining not just a single spectrum for a
galaxy, but as many as 127 spectra across di↵erent loca-
tions on the galaxy, depending on its angular size [Bundy
et al. 2014]. MaNGA alone did not directly identify any
lensed galaxies. However, a project that began a few
years later during SDSS-IV combed MaNGA spectra to
pick out strong lenses.

That project was the Spectroscopic Identification of
Lensing Objects project by [Talbot et al. 2020]. They
published a complete catalog of lensed objects from both
the MaNGA and eBOSS surveys, which contains “838
likely, 448 probable, and 265 possible strong lens candi-
dates within ⇡ 2 million galaxy spectra”, all of which
were found spectroscopically. That is a total of 1, 551
possible lensed objects. If every candidate turned out to
be a lens, then out of 2 million spectra, ⌧ 1% of the data
would be an object of interest; again, many of these spec-
tra had to be visually inspected to confirm their value for
follow-up imaging by HST or their inclusion in the SILO
database.

The chances of a gravitational lens occurring in the
first place are already meager; adding in the additional
reduction in the likelihood due to instrumental factors
making it even more challenging to detect spectroscopi-
cally creates a very daunting task for anyone – even pro-
fessionals – to attempt manually. This problem is pre-
cisely what we have set out to solve.
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II. COMPUTATIONAL METHODS

Now that we have discussed who and what works we
are building o↵ of, let us look at where we started

A. Model Input & Pre-Process Questions

The SDSS spectrograph, used in all the prominent sur-
veys discussed in the previous section, gives continuous
spectra between 3, 600–10, 300Å with 4, 563 individual
flux read-outs. To anticipate training on SDSS spectra,
we will use an input array of length 4, 563.

FIG. 3. An example of two galaxy spectra taken during BOSS
survey [Dawson et al. 2012]. Many emission line features are
labeled for both spectra.

However, when attempting to train a neural network to
detect faint features from a galaxy in the background (the
source), we want to remove these prominent features from
the foreground (the lens), so that the model can focus on
the features it wants to predict. Luckily, the SLACS
pipeline already created a way of looking for lensed ob-
jects spectroscopically: by subtracting a best-fit model
for the foreground galaxy, one can e↵ectively see just the
background of the galaxy, which has much fewer features
and makes searching for emission lines much more man-
ageable.

The size of the spectrum’s array is not changed in the
foreground-subtraction process and results in essentially
pure noise arrays unless objects are present in the back-
ground. This is ideal for training a machine learning
model, as features that are present stand out much more.

So, the original plan for our training dataset was to
use SILO’s database of lensed galaxies and modeled fore-
grounds to attain enough background spectra to train the
CASIGLO model to reliably detect any of the 12 emis-
sion lines detailed in Table 1. However, we soon realized
that there were a few key issues that we had to address
first:

1. Low Lensing Probability / Emission Line Rarity

2. Dealing with sky-lines and other anomalous fea-
tures

3. Deciding the details of the model’s output

FIG. 4. An example of a foreground-subtracted spectra from
SILO’s database without any emission lines. Flux is on the
y-axis and the x-axis is the wavelength Angstroms (Å). While
a few features are present – such as the flares on both sides
and a spike near 5, 600Å– with the foreground subtracted, the
spectra is almost pure noise.

Firstly, as discussed in Arneson et al. [2012], the prob-
ability of a galaxy spectra containing a lensed system
is less than 1%. So, while SDSS has millions of spectra
available, SILO only has about 900 spectra available that
would be useful for training our model. However, spec-
tra vary wildly due to the 212 di↵erent possible combi-
nations of emission lines, redshifts ranging between 0.01
and 1 in the SDSS survey, and the vast di↵erences in the
general shape of galaxy spectra due to chemical makeups
and types of galaxies. Thus, to properly train a machine
learning model to recognize the presence of a lensed ob-
ject in a galaxy’s spectra, we need much more data than
will likely ever be available. Instead, we shall generate
an extensive database of synthetic spectra.
It may seem like a bad idea to train a neural network

on data from a di↵erent source than the one on which the
model will make predictions. However, as shown Kaisti
et al. [2021], models trained using synthetic data can pro-
duce results that outperform models trained on real data.
This has also been shown to be true for models that take
higher-dimensional inputs such as images (see Seib et al.
[2020]). Using ideas from both papers referenced above,
the plan for the CASIGLO project’s database became
clear: Using SDSS’s plethora of foreground-subtracted
spectra that are incredibly unlikely to have any emission
lines, we can then add synthetic emission lines at any
redshift and SNR we desire.
To build this database, we use all the spectra in the

SDSS database, subtract the foreground and save the
backgrounds. As this is done, the foreground redshifts
of each spectrum are recorded so that the distribution of
redshifts can be analyzed. Since the initial goal is to test
this model on spectra in the MaNGA database, which
only contains galaxies with 0.03 < z < 0.10, we want
most of our data to fall into that range.
After the backgrounds are saved into their respective

bins, we can start adding in our synthetic emission lines.
But this is were our second problem starts to stand out.
In figure 4, no emission lines are present, yet there still
appears to be a line at ⇡ 5, 600Å. If used as training
data, this could be confused for an emission line.
These features are our second problem, and they come

from the fact that the SDSS/BOSS spectrographs are lo-
cated on Earth. This means that the instruments have



6

FIG. 5. The redshift (z) distribution of foreground galaxies
used to generate synthetic spectra for the CASIGLO training
dataset. The majority of spectra had a foreground redshift
< 0.10, matching the MaNGA dataset.

to look through Earth’s atmosphere, resulting in a signal,
most of which is from our sky, leaving only ⇡ 1% of the
signal corresponding to the galaxy and background. How
one handles the sky determines what the leftover spec-
tra look like1. The atmosphere is removed from these
spectra so we can focus on the galaxies; however, this
subtraction is not always ideal. Often, “sky-lines” ap-
pear that look like emission lines but have a much larger
SNR (seen in Figure 4). If any sky-lines are present in
the synthetic spectra we generate, it could lead to slower
training and worse performance. To deal with these ex-
tra spikes in the spectra, we slide a rolling window across
our spectra of width 200Å and find the standard devi-
ation, �, of flux readings across it. If any flux value in
that window has more than 3� is removed and replaced
with a random value between ±�. This ensures that no
sky-lines or other anomalous features are present in the
spectra before adding the details we want our model to
recognize.

Lastly, before we can start training, we have to decide
the output of our model (i.e., what our predictions will
tell us). If you were training a model to detect handwrit-
ing based on images, its output could be a set of prob-
abilities corresponding to di↵erent letters and numbers,
with the highest probability being the model’s “guess”.
Alternatively, if you wanted a model that could guess a
person’s age based on health information, you could have
a single output node that returns a number in a specific
range (say 1-100 years old). For CASIGLO, we want
our model to recognize emission lines behind the target

1
This is one issue that would a↵ect how well the CASIGLO

model could be applied to other spectrographs.

galaxy, so it needs to know what redshift the emission
lines are at. Thus, we will have an output node that tries
to approximate the redshift of emission lines. It would
also be beneficial to know precisely which emission lines
are present (of which there are 12) and how strong they
appear (their signal-to-noise ratio). Therefore, we will
design our output to be 13 nodes, one for each emission
line’s SNR and one more for the approximate redshift
value of said emission lines.

B. Synthetic Data Generation

With a clear plan of data structure, data cleaning,
and our inputs and outputs, let us now look into the
details of how we generated our data and the decisions
we made to make them physically accurate. As already
discussed, we use real backgrounds to generate our syn-
thetic data, and anomalous features are removed and re-
placed with random, non-significant noise. First, SDSS’s
speczall.fits file is used to get unique ID numbers2 for
each spectrum in the database. These IDs are then used
to retrieve the raw spectra, as well as the corresponding
foreground model. The foreground is then subtracted,
leaving only the background spectra which are binned
into folders based on the foreground galaxy’s redshift
value and saved for later use. As discussed previously,
during this process the foreground redshift of each spec-
trum is saved into an array so that we can see the redshift
distribution shown in Figure 5.

FIG. 6. The distribution of standard deviations for all emis-
sion lines detected by SILO. Most emission lines detected have
� = 0.4Å and the rest group around 1.7Å. These two values,
along with their respective probabilities, are used in generat-
ing synthetic emission lines.

2
plate number, and Integral Field Unit (IFU) design
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Once all the backgrounds are saved, we can start
adding in our synthetic emission lines, which can be ap-
proximated as Gaussians. However, in order to create
physically accurate emission lines we need to use width
parameters (�) that match the widths of observed emis-
sion lines. When plotting the width of all emission lines
detected by SILO, we can see two main values stand
out: one around 0.4 Angstroms and another around 1.7
Angstroms. These 2 widths show up with relative prob-
abilities of about 6-to-1.

So, these two most common values were used when
generating synthetic emission lines and were generated
in their relative probabilities of 6/7 and 1/7 respectively.
After deciding the width, the SNR of each emission
line must also be set. The SNR of any given emission
line needs to be set and should be randomized to give
variation to the model data to aid training. This value
can be arbitrarily large, but in order to match our data,
we need to limit this value to more reasonable values.
The SILO project limited their minimum requirement
for emission line candidates to a SNR of 4̃, however
many emission lines are likely much less significant than
that, and few may be much more significant. Thus,
when generating our random SNRs, we want to generate
their values with a distribution that peaks around 4, has
a higher likelihood of being less than 4, and drops o↵
quickly past about 5. After analyzing many di↵erent
distributions, we settled on a Moyal distribution with
µ = 4 and � = 1.5.

FIG. 7. Di↵erent SNR distributions that were considered for
synthetic data generation. We settled on the Moyal distribu-
tion (shown in green) due to its lower probability of generating
large SNRs.

We now have random generation of the width and SNR
of our synthetic Gaussian emission lines ready. There
is only one more step before we can begin generating
realistic synthetic spectra: redshifting the emission lines
to the proper wavelengths.

Since the definition of redshift is simply the di↵erence
in wavelength over the rest-frame wavelength, we can do
some simple algebra to get from a redshift value to the

new location of our emission line, since we know the rest
frame wavelength.

z =
�obs � �rest

�rest

=
�obs

�rest
� 1

z + 1 =
�obs

�rest

�obs = �rest(z + 1)

(1)

With this simple relation, we only need a redshift value
for each spectra we generate and we can easily shift each
of our emission lines to a simulated redshift. But, just
as we wanted randomization in our SNRs to help the
training process, we also want to randomize our redshifts.
Since the source objects will always be behind the lens it-
self, we only want to generate redshift values larger than
the foreground redshift of the background we are using.
How much larger is a more di�cult question, however.
Looking at SILO’s detected lenses and separating them

into the SLACS, BELLS, and MaNGA surveys, we can
see how the redshift of each source object relates to the
redshift of its lensing counterpart.

FIG. 8. The ratio of source redshift to lens redshift. For
BELLS we can see a very clear peak at 2, indicating that the
source objects are very likely to be at twice the redshift as
the lens. Moving to MaNGA, this distribution really flattens
out to almost be uniform between 2-10. This is due to all the
lens galaxies in the MaNGA survey being at low redshifts.

All the preparations are now complete and all that
is left to do is generate spectra. We will iterate over
all foreground redshift bins and generate 20 spectra for
each combination of emission lines. These spectra are
then saved as a parquet file to be loaded later and fed
into our model for training. This is quite a hefty cal-
culation though, as we have 146 redshift bins spanning
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z = 0.00370 to z = 0.14970. With 12 emission lines,
taking every combination results in 212 = 4, 096 combina-
tions and totaling in 598,016 HDF5 files. With 20 spectra
in each file, a total of 11,960,320 spectra are being gen-
erated. Being written in python without using Numba
or any other python compiler packages, generating even
a single file takes a few seconds. Generating nearly 12
million files would be unreasonable without parelleliza-
tion. We use 64 cores and divide our 146 redshift bins
evenly amongst each core. Doing so lets us generate all
12 million files in approximately 4 days.

The final spectra generated can be compared to real
spectra and results are almost indiscernible by eye.

FIG. 9. Top: One of the synthetic spectra generated for
the CASIGLO database with synthetic emission lines present.
Bottom: A real foreground-subtracted spectra from a lens
galaxy found in the MaNGA survey without emission lines.
(Plate-IFU: 8606-6102). While the presence of emission lines
identifies one from the other, the noise and general appear-
ances have very similar forms, making them ideal for training.

Now that we have a database of realistic synthetic spec-
tra with enough variation to train our model, and have
our inputs and outputs planned, we just have to build
the structure of our model before we can begin training.

C. Expand on Machine Learning Process

To start building our model architecture we employ the
use of TensorFlow [Abadi et al. 2015]: An open-source
platform that allows users to quickly build, train, and
evaluate machine learning models and AI. TensorFlow
has a python library that makes incorporating a model
into your existing python workflow incredibly easy. How-
ever, there is not just one kind of machine learning, and
before discussing what we built, one should first under-
stand why we chose to build our model the way we did.

There are three main learning problems in machine
learning:

Supervised Learning:: The model attempts to learn
the best mapping between inputs and outputs.
This is referred to as “supervised” as the output
that is supplied is compared to the model’s predic-
tions and the mapping is corrected based on the
di↵erences.

[Ex:]Estimating the price of a house based on
data from other houses in the same city

Unsupervised Learning:: The model attempts to find
relationships from input data. As no out-
puts are fed into the model, is simply tried
to group the data or estimate the data’s
distribution.

[Ex:]Kernel Density Estimations

Reinforcement Learning:: The model is given a set of
operations that it can execute. Supplied
with some numerical “reward”, the model
tries to maximize its reward by changing
the order and set of actions that it exe-
cutes.

[Ex:]An AI that learns to play the game
“Snake”. The model can move in all 4
cardinal directions and the length of the
player is the reward.

The problem CASIGLO is trying to solve is falls into
the category of supervised learning as we want to learn
the mapping from input spectra to an output of emis-
sion lines’ SNRs and the source redshift. But supervised
learning itself can be broken down into two main situa-
tions: Classification & Regression.
In both cases, the model is attempting to predict the

labels in whatever form we supply them (as strings, inte-
gers, Booleans, etc.). Classification would be predicting
a class label for our input whereas regression would pre-
dict a numerical value. As we are hoping to output the
SNRs of each emission line and the source redshift, our
problem falls into the regression category. Simple super-
vised learning neural network architecture is composed
of a set of input nodes and output nodes, with “hidden
layers” in between. Most of the time, these nodes are
“fully connected” to the next layer, meaning each node
can have an e↵ect on every other node in the next layer.
The e↵ect that each node has on a connected node is
decided by the connection’s weights and the bias of the
hidden note: The output of a node in a hidden layer is
related to all of its inputs by the following.

z = b+
i=NX

i=1

aiwi

Where z is the output, ai is the input of each connected
node (of which, there are N), wi is the weight of each
connection, and b is the bias of the hidden node.
The training process for a neural network simply up-

dates these weights & biases every time a new input-
output pair is supplied. How these values are updated is
all based on your model’s loss function. For regression
cases, this loss function could be the accuracy, precision,
or simply the absolute di↵erence from the expected out-
put. Were we to lower our data dimensionality to one
input and one output, one can see that minimizing this



9

FIG. 10. A simple, fully connected neural network with la-
beled weights and biases. Weights are listed above each line
and biases are the di↵erence between the number in the top
left of each hidden node and the node’s value.[stack exchange
link]

loss function would be equivalent to fitting a single best-
fit line to a set of points. A model with 2 inputs and 1
output would be finding a best-fit surface to match the
data. With our input of 4, 563 flux readings and an out-
put of 13 values, however, we are fitting a much more
complicated, high-dimensional hyper-plane to our input
spectra and output labels. This is a very di�cult prob-
lem and trying to fit this hyperplane would require an
immense amount of computing power and time. This is
where convolutional neural networks can help us. Convo-
lutional neural networks are commonly used in computer
vision problems such as object detection and image clas-
sification. Convolution is a process that lowers the di-
mensionality of your data while preserving the relative
locations of objects by passing a number of filters across
your data. The filters have the same dimensionality as
the data and you can have multiple filters in each layer.
For example, instead of a classifier using every pixel in an
image to try and discern the di↵erence between a human
and a cat, it can learn to create two-dimensional filters
that can instead group pixels together into objects such
as “Head”, “Tail”, “arms”, etc. By looking at the rela-
tionships between the few objects the filters detect, the
model can learn much faster. We intend to use convolu-
tion to pick out peaks in our spectra and more quickly
train our model.

Now that we understand the concepts used to build
our model, let us discuss the specific architecture of the
CASIGLO model and what changes were made during
the training process.

III. OUTCOME & CHALLENGES

The architecture of the CASIGLO convolutional neu-
ral network was initially based on the work of a previous
graduate student in the School of Computing (a special
thanks to Salvatore Stone Mele) who was trying to pre-
dict just the redshift of spectra. The model was only
accurate to around ±0.01. Since redshift values are ex-

pected to be scientifically accurate ±10�5, the model was
not feasible and was abandoned. However, the architec-
ture could be easily modified to output 13 values instead
of one.
The model consisted of four convolutional layers, each

with a successively decreasing number of filters. After the
fourth convolutional layer applied its filters, the results
were then flattened out into a single set of nodes. These
nodes were then output into four fully-connected layers
(not convolutional layers). These fully-connected layers
decreased in size until the final output was a single node
which predicted the redshift. As stated above, we replace
this last single node with 13 nodes.
However, just having the layers themselves is not suf-

ficient for e↵ective training. As discussed in Huang
et al. [2020], normalization of input data removes statisti-
cal di↵erence in magnitudes between features, improving
learning results. Thus, we add batch normalization to
every layer in our model. Other statistical tools can also
be used to help improve the results of training: Both
“max pooling” and “Dropout” can reduce prediction er-
rors as well. Max-pooling reduces the size of your layer
by passing forward only the maximum value in a patch
of some size (specified by the user). Dropout layers make
it so that random nodes are ignored during the training
process, helping reduce the possibility that nodes become
co-dependant on one another. The e↵ect of each of these
layers is discussed in Wu and Gu [2015].

FIG. 11. The impact of dropout and max-pooling layers on
a neural networks training and validation stages. The top
two plots are for dropout while the bottom plots are for max-
pooling. Similarly, the left plots correspond to the training
phase while the right plots correspond to the validation (or
testing) phases. Notice that the presence of both layers slows
down the learning rate during the training stage, but this
lower learning rate tends to reduce error faster during the
validation stage.

We thus include both max-pooling on all layers and
dropout layers just on convolution. We do not include

https://patents.stackexchange.com/questions/18965/do-the-weights-of-a-neural-network-get-any-kind-of-ip-protection
https://patents.stackexchange.com/questions/18965/do-the-weights-of-a-neural-network-get-any-kind-of-ip-protection
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dropout in the convolutional layers to avoid dropping out
emission lines. With our model architecture completed,
we can view how many parameters are being trained by
calling TensorFlow’s summary function. Doing so, we see
the following parameter counts.

Total parameters : 4, 558, 073

Trainable parameters : 4, 551, 169

Non-trainable parameters : 6, 904

Meaning that training our model requires fitting over
4.5 million parameters.

All that is left to do now, before we can start training
is to decide a loss function to minimize. For our first run,
we naively used accuracy, as well as keeping track of the
mean-squared-error along the way.

With a model created, a database of synthetic spectra
at the ready, and a loss function determined, we could
begin training the model. When first beginning training,
the model was instructed to simply iterate over every
file in every sub-folder of every redshift bin of data that
was generated. Each file contained 20 spectra and those
spectra were each passed into the model only once. That
means that the weights, biases, and convolutional filters
were only updated once every time a spectra was input.

FIG. 12. The results of our first attempt to train the
CASIGLO neural network. The top plot shows the model’s
prediction accuracy as a function of the training epoch (the
number of times the model updates its weights, biases, and
filters). The top plot shows the mean-squared error (MSE) as
a function of epoch. The Accuracy seems to be converging to
⇠ 0.35, meaning that the model made the correct predictions
of SNR and redshift 35% of the time. The MSE appears to
converge around 10, meaning that the SNRs and redshift had
an average error of ⇠ 3.16.

While not unpromising, these results have a fatal
flaw. The accuracy loss function calculates how often
the model predicts the correct class result (both true
positives & true negatives), meaning it is reserved for
classification problems. Therefore, our results were fun-
damentally flawed and should not be taken to have any

meaning. The MSE, however, is used for regression prob-
lems. But the results converged to such a high value in
relation to the redshift and SNR that the model is use-
less.
Realizing these errors, the model’s loss function was

changed to measure the mean absolute error (MAE) and
the precision was monitored as well. As the precision was
not set as our loss function, only a quantity to monitor,
the fact that it is a classification metric had no e↵ect on
how the model was learning.
We soon realized a few more mistakes made in the

training process. In order for a model to learn more e↵ec-
tively, the inputs supplied to the model should be varied
in their outputs. This would ensure that the model is
not simply learning a single set of emission lines for ev-
ery file passed in, then immediately un-learning due to a
di↵erent set of emission lines being passed. Initially, sim-
ply using all 20 spectra in a file meant that all the same
emission lines were present and the only variation was in
the SNRs. The process was changed to grab 20 random
files and use all 20 spectra in each to train the model3.
Doing so ensures that each batch has a mix of emission
lines present. Since SNRs are still being randomized,
each batch should su�ciently represent our dataset.
Restarting the training process, our results appeared

pretty similar with only slightly better errors.

FIG. 13. The results of a later training run after fixing errors
and slightly streamlining the training process. The top plot
shows the MAE of SNRs and redshift as a function of epoch.
The bottom plot shows the precision. While precision seems
to converge around 80%, this is only due to the model learning
to predict all zero values. This specific training was done
before the batch size was increased, so the training speed per
batch is not visible as it is in the next figure.

While results seemed better due to the precision con-
verging to almost 80%, when looking at the actual pre-
dictions, it became clear that the seemingly high perfor-
mance was due to the model simply predicting zero for all
emission lines no matter what spectra it was predicting
on. This state of predicting all zeros is due to the loss
function getting stuck in one of its local minima; this
particular local minimum happens to be quite large due

3
The “Batch size” is the number of files times the number of

spectra in each file; 400 in this case.
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to the number of emission lines and the low likelihood of
emission lines being present.4

At this point in the project, many more training at-
tempts were made, and not much was progressing. The
training was slow, and the results kept tending toward
all zero predictions. The decision was made to simplify
the model in order to both speed up the training process
as well as more easily identify what was going wrong.

The model was simplified to only two convolutional
layers – one with large filters and one with small filters
– followed by only a single dense layer before outputting
the 13 values. Another training attempt reveals that not
only is a larger batch size helping our training results, but
the smaller model seems to be producing more accurate
predictions.

FIG. 14. The results of a training run with the simplified con-
volution and dense layers. For this training, another metric
was also monitored: the KL divergence. The KL divergence
is a measure of how close two distributions are, so this met-
ric can clue us in as to how often the model is guessing the
correct set of emission lines.
Notice that eventually the model seems to stop learning any-
thing and gets stuck at a higher error value than what it
achieves through training on each batch. This is the result of
over-fitting the model.

The model continues to get stuck in the local minima
of all-zero predictions, and training results alone did not
clue us in to the issue. Our next step to identify the issue
was something that should have been done much sooner:
plotting the results of the loss and other metrics from the
validation phase and comparing it to the training phase.

When a batch of files is passed into a model for train-
ing, it is standard practice to reserve around 20% of your
data for testing or validating how well the model learned
from the other 80% of the data. The model first tries
to learn what to predict in the training phase, then the
validation phase (also called the testing phase) is just for
making predictions; weights and biases are not updated
during this phase. However, after each epoch, the model
should still make better predictions on the validation set
due to the training phase updates to the model parame-
ters.

4
This issue persisted for many di↵erent iterations of our model

and is still a major sticking point for this project.

When doing so for both the original CASIGLO model
as well as the smaller model, we see that while the MAE
for training decreases nicely over each batch, the MAE
during validation either stays constant or tends to in-
crease. This is another sign of over-fitting.

FIG. 15. Mean-Absolute-Error (MAE) vs epoch for both the
training phase (shown in blue) and validation phase (shown
in orange). Four batches of files are present and are identified
by the sharp increase in error between them due to a new set
of spectra being introduced.
While the training error decreases at a promising rate, valida-
tion error stays mostly the same over each batch, indicating
that the model is only learning the training data, not learning
the problem in general. This is another sign of over-fitting

It was becoming clear that trying to fine-tune the loss
function, batch size, learning rate, and other basic model
parameters was not going to fix the issue. Some extra
steps are needed to dissuade the model from falling into
the trap of over-fitting. This is when regularization was
added.
Regularization is a process that alters your loss func-

tion by adding extra terms and can help reduce the train-
ing impact of noise in your data and fight over-fitting.
There are two main types of regularization used in ma-
chine learning: Lasso (L1) regression and Ridge (L2) re-
gression. Ridge (L2) regression works by adding a pe-
nalization term to the loss function and e↵ectively puts
constraints on the weights so that no single node can
contribute too much to the output (e.g. no zero val-
ues). Lasso (L1) regression is very similar but it does
allow weights to reach zero and can thus help with fea-
ture selection (i.e. choosing which input nodes/set of
nodes contributes most to the output).
At the time of learning about regression, the end of

the semester was rapidly approaching and little time was
left to make improvements. I tested a few combinations
of both L1 and L2 regression parameters and was able
to find that using just L1 regularization (L2=0) with a
value L1 ⇡ 0.04 was enough to allow the validation error
to start following the training error.
Other combinations of L1 & L2 regularization that
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FIG. 16. Training and validation MAE values plotted against
epoch. Unlike earlier the validation line begins to track the
training line, implying that the model is learning to actually
predict emission lines, not just learning the data set. Unfortu-
nately, the model stopped learning during training after just
two batches.

were tested did not produce any noticeable progress.

A few weeks before research progress came to a halt,
a complete redesign of the model was created with some
promising results, however, not enough time was left to
explore the extent of the new model’s capabilities.

Both models previously used were completely linear,
with the output of each layer being passed into the next.
The idea for the model redesign was that the redshift es-
timate should have a very large impact on which input
nodes correspond to relative output nodes as the red-
shift changes where emission lines are located. In order
to have the model account for this, a non-linear model
was created. The input spectra are first passed through
two convolutional layers which are then flattened into a
dense layer which is then used to make a single predic-
tion for the redshift. However, unlike the linear models,
the input spectra are also passed into a parallel branch
consisting of two of convolutional layers which are again
flattened. This parallel flattened layer is then combined
with the initial estimate for the redshift, re-joining the
parallel branches. Then the model has one more dens
layer before returning two outputs: one for the presence
of each emission line, and another for an updated redshift
estimate.

To help ease the model into the emission line problem,
instead of jumping right into the deep end and detecting
the SNR of each emission line, we take a step back and
just try to have the model predict whether an emission
line is present or not. Emission line output nodes return
a probability that an emission line is present, and the
redshift output continues to return a decimal value. L1
and L2 regression parameters are still present along with
batch normalization, max-pooling, and dropout layers.

With this updated model, we can see that training
results not only learn but continue to build upon what
was learned in previous epochs. This can be seen in the
successively decreasing spikes at the start of each epoch.
However, the validation loss continues to stay stagnant.

FIG. 17. Results of the last training ran on the newly updated
model. The top plot shows the accuracy of predicted emission
line presence and the bottom plot shows the MAE in redshift
predictions.
This model seems to be performing the best out of all models
attempted so far. Decreasing peaks illustrate the potential
success of this architecture.

FIG. 18. Prediction results from the last training run. The
input spectrum is plotted in blue and predicted locations of
emission lines are present.
Predicted vs. expected redshift is shown as a plot annotation.
Predicted vs expected emission lines are shown in the plot’s
title; each 0 or 1 is representative of the respective emission
line detailed in Table 1. H↵ was correctly detected.

IV. CONCLUSION

The CASIGLO project still has a long way to go.
These results end my work, and while the model is not re-
liable and cannot be implemented into SDSS workflows,
they should form a great backbone for anyone else willing
to continue the project.

We have learned a great deal about what it takes to
apply machine learning to a process such as this, and
huge steps have been taken to achieve the goal of auto-
mated detection of lensed galaxies. However, there is still
a lot of work that has to be done. The model should be
properly trained to greater than 90% accuracy in emis-
sion line detection and be redshift accurate to ⇠ 10�5.
This would ensure that if follow-up is done using Hubble
Space Telescope imaging or any other method, that time,
materials, and funding is not wasted on false positives.

With the mistakes made along the way, updated knowl-
edge of the machine learning process, and hindsight, I will
use the next section to help guide anyone who deems this
project worthy of pursuing further.
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A. Future Steps

The interconnected model was the single biggest
progress jump over the span of my work on the project.
I believe that a similar structure is key to the success of
this project; however, there are a few improvements that
I would have made myself had time permitted.

Firstly, the disk space requirements of the backgrounds
is quite large at the moment. If no statistical di↵er-
ence is found between backgrounds in di↵erent redshift
bins, PCA could be used to generate physically accurate
backgrounds on the fly and would require very little disk
space.

Also, the redshift estimates of the new, interconnected
model can still predict negative values. This is an obvious
error that needs to be fixed either with regularization
parameters or a change of data type in the model output
layer. I believe that fixing this would improve the model’s
overall performance, both with redshift estimates as well
as emission line predictions.

Another key element that could be introduced to the
redshift predictions is by using SDSS’s pre-existing mea-
sure of the foreground redshift. Setting this value as a
floor for the initial redshift prediction could drastically
reduce the error for the model’s output as it would give
the model a “starting point” of sorts.

Next, regularization parameters should be fine-tuned
to produce the best combination of penalization and fea-
ture selection. This could be done through multiple-
regression with the training speed as the dependant vari-
able and L1 & L2 parameters as the independent vari-
ables. By training a few batches on di↵erent combina-
tions of L1 and L2 and using the validation learning
rate as a predictor variable, fine-tuning these parame-
ters could be a quick task if training can be executed
fast enough.

This is where my last suggestion comes in; training,
both on CPU and GPU, can be quite cumbersome. Due
to the way spectra were saved, reading the files, combin-
ing their spectra into the proper format for TensorFlow to
accept, and finally passing it into the model slows down
the training process immensely. Files were saved in par-
quet format as discussed previously but were done so
using the Pandas Python package [pandas development
team 2020]. Pandas works great for saving and loading
files, however, it does not allow generators to handle the
files. This became an issue during the training process
as a generator would be a much faster and easier way
to shu✏e, format, and feed in data, but it had to be
done manually instead. Switching away from Pandas to
another DataFrame handler such as h5py could allow for
the use of generators, creating faster training. This would
even open up the possibility to train the model on mul-
tiple batches at once through distributed training/multi-
threading.

I hope this work and the suggestions provided create
a solid ground for future researchers to excel in the ad-
vancement of lensed object detection. All my code is

available here and data used to generate spectra are avail-
able through SDSS databases.
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